Detection of Segregation in Asphalt Pavement Materials using the ARAN Profile System

NORTHEAST ASPHALT USER/PRODUCER GROUP NEWPORT MARRIOTT, NEWPORT, RHODE ISLAND

OCTOBER 30 & 31, 2002

-by-Dr. Geoffrey M. Rowe, Dr. Jay Meegoda and Mr. Andris A. Jumikis

Introduction

- ✓ Segregation
 - Segregation in a bituminous mix refers to the uneven distribution of coarse and fine particles along the pavement to another, due to some deficiency in the mixing, transportation, or paving operations
 - Results in dispute between constructioncontractors and highway agencies as its presence and severity-level are based on visual observation and judgment

Segregation – the results

- Can lead to
 deterioration of
 surface resulting
 in high
 maintenance
 needs
- Surface cracking,
 crazing and
 raveling

Segregation

Pot hole formation results in loss of serviceability

Objectives

- To look at available technology for assessing segregation
- Test methods on a series of sites in New Jersey
- Assess possible implementation of device
- Z Develop draft implementation protocols

Traditional Methods of Segregation Detection

(1) Visual Identification(2) Sand Patch Test

Nuclear Density Gauges
 Infrared Thermographs
 Laser Measuring Devices

Technologies

Laser technology offers best possible method to for implementation

Tost	Type of Mix			Depth of measurement		
Method	Fine Gradations	Dense Gradations	SMA	Surface Only	Depth of Lift	Full AC Mat Depth
Visual Observe	Yes	Yes	Yes	Yes	No	No
Sand Patch	Yes	Yes	Yes	Yes	Yes	No
Nuclear Density	Gradation Dependent	Gradation Dependent	Yes	No	Yes	No
Laser	Yes	Yes	Yes	Yes	No	No
GPR	Unknown	Unknown	Unknown	No	Yes	Yes
Infrared	Unknown	Unknown	Unknown	Yes	Thin Lift	Unknown

Laser Measuring Devices

- *Z* Dynatest (Denmark)
- *Greenwood Engineering (*Denmark)
- 🖉 ARAN (Canada)
- « WDM HSTM (UK)
- *∝ ARRB (Australia)*
- ROSAN (US)

Laser measurements/uses

NCHRP Study (NCAT)

NCAT developed the ROSAN_v device, this asphalt pavement and aggregate segregation is illustrated - the graph shows "waves" of about 24-25 meters in length.

ARAN

4900 - up to 15 subsystems; generally mounted in a cube van. A full compliment of sensors provide for automated pavement distress and multi-camera panoramic videologging.

Equipment selection

- Since NJDOT operates ARAN we selected this device for the project
- Drs. Rowe and Meegoda visited facility to obtain first hand understanding of equipment functionality and procedures
- Conducted trial data collection at manufactures facility

Distance (m)

Definitions – ARAN texture

ARAN uses a numerical integration to compute texture – similar to ASTM E1845

Determination of MPD for a base length

Depth (mm)

Site evaluations

Three sites looked at: Rt. 9 – known segregation
 Rt. 195 – two areas
 One segregated
 One not considered segregated

The Route 9 Site

- The Route 9 site was the first site looked at in detail
- Provided the basis for the analysis
- \measuredangle Site Location:
 - ∠ MP 111.5 to 112.0
 - North Bound Fast Line

Field Testing Program

- Texture measurement using ARAN
- Sand Patch Test
- Nuclear Density Measurement
- ∠ Coring
- Visual Observations

Field Testing Program

Site Preparation

- 5' intervals were marked over a length of 1500'
- Three test lines were located 3', 5.5' and 8' from the edge of the road

ARAN

• ARAN was run along each test line at a speed of 40 mph to capture texture profile

Other Tests

- - Some test at each Sand Patch location
- Pavement Cores
 - Cores taken from 11 locations to cover the whole site
 - ∠ Bulk Specific Gravity
- Visual Observations
 - This was conducted to enable a visual comparison

Sand patch testing

ARAN data

✓ Three test files – one for each run

General View. Area of the foreground is patched due to disintegration of materials as a result of segregation

ARAN testing on Rt. 9

Poor correlation- standard regression

Good Correlation between Sand Patch and ARAN – frequency distribution

Correlation

- \measuredangle Poor with regression
- Good with frequency distribution
- Conclusion
 - ARAN did not follow same line as intended
 - ✓ Data is representative of same population

Segregation detection

Data is consistent with end of truck segregation – peak at approximately 30 yard centers.

Distance (m)

Rt. 195

Project tested at night2 sites/areas on Rt. 195

I-195 testing

- Testing on I 195 done
 during a night
 closure due to
 traffic
 considerations
- Paint line
 used to help
 locate
 position of
 ARAN device

I-195

- Results consistent with visual inspection
- Segregation is different from Rt. 9 in that a regular pattern was not obtained on all runs
- The differences obtained from three runs on the same line suggest that it is very difficult to locate exactly on a line
- The implementation of a specification will need multiple lines tested to produce a fair result for a site

Application of the ARAN in specifications

Definition of % segregation and class

1000 feet

Longitudinal paths for testing

Definition of % segregation $\frac{3}{N}$

$$A_i = \frac{\sum_{n=1}^{\infty} \sum_{k=1}^{l_{ink}} l_{ink}}{A_{Total}} \times \frac{W}{3} \times 100$$

- A_i = Percentage area of segregation in each level (*i* = low, medium or high)
- l = Length of a segregated area in meters
- W = Width of the test area in meters
- A_{total} =Total area of the lot in square meters
- n = considered one-third of test area (test line)
- k = Segregated area identification number
- N = Total number of segregated areas in each test line

Remedial treatments

Remedial action linked to size of feature and level of segregation

Categorization of extent of the individual segregated areas

Segregation Class	Longitudinal Extent (mm)
1	≤ 200
2	$200 < and \le 400$
3	$400 < and \le 800$
4	$800 < and \le 1600$
5	>1600

Possible Remedial actions

Extent of Individual Segregated	Level of Segregation		
Area (mm)	Low	Medium	High
≤ 200	No Action	No Action	Localized patch
$200 < and \le 400$	No Action	Localized Patch	Remove and replace.
$400 < and \le 800$	Localized Patch	Localized Patch	Remove and replace.
$800 < and \le 1600$	Localized Patch	Remove and replace.	Remove and replace.
1600 ≤	Remove and replace	Remove and replace.	Remove and replace.

Remedial actions for segregation

AREA Index

Øbjective - combine different degrees
 of segregation into a single quality
 measure

$$AREA = A_{low} \times 1.0 + A_{medium} \times 1.43 + A_{high} \times 2.5$$

where, A_{low} = Percentage area of low segregation A_{medium} = Percentage area of medium segregation A_{high} = Percentage area of high segregation

Pay factors

\measuredangle Pay factors linked to AREA Index

Range of the AREA Index	Pay Adjustment Factor
0 - 5.0	105
5.0 - 15.0	95
15.0 - 25.0	85
25.0-35.0	65
35.0 - 45.0	25

Pay adjustment factors

NJTxtr - software for segregation monitoring

- MJTxtr software was developed to detect and monitor segregation based on ARAN
- It uses either user specified asphalt surface course information or texture of non segregated areas to compute Estimated Texture Depth (ETD)
- ETD is used to compute Texture Ratio (TR), which can be used to differentiate different levels of segregation

Conclusions (1)

- Several available segregation detection & measuring methods were evaluated to identify the best technology for NJDOT
- Laser texture measuring devices were selected over other technologies since it offers fast data collecting phase without interrupting traffic
- Ratios of texture in segregated areas to that in nonsegregated areas were set on the basis for detection and monitoring of different levels of segregation
- AREA index was developed to determine the acceptance or non acceptance of a pavement section

Conclusions (2)

- Based on AREA index, pay adjustment factors are defined to determine the reduction of payment to account for the loss of pavement life due to segregation
- New segregation detecting and monitoring software NJTxtr was developed by combining above developed methodologies
- This software determines a pavement section is acceptable or unacceptable based on the level of segregation present
- A specification was developed for detection and monitoring of segregation based on ARAN collected pavement texture data

Beautiful asphalt highways.

Thank you for your attention.